

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

1.1. Introduction

1.2. Architecture Fundamentals

1.3. Security Implementations

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Welcome to the System Security section of the PTP course.

The purpose of this section is to give you the fundamental
concepts needed to help you improve your skills in topics such as
fuzzing, exploit development, buffer overflows, debugging, reverse
engineering and malware analysis.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

If you choose to continue your cybersecurity career as a reverse
engineer, malware analyst, penetration tester, forensics
investigator, etc., this will provide a solid foundation in this area.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

During the course, we will begin with important topics such as x86
and x64 architectures, assembly, compilers, security
implementations such as ASLR and DEP, to name a few.

We will focus on attacking techniques such as the buffer overflows
(BOF). We explore how BOF works and how we can fuzz and
reverse engineer applications in order to find vulnerabilities.
Finally, utilizing those vulnerabilities, we will see how to exploit
them to execute arbitrary code on the target machine.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Although some of the topics and the techniques can be applied to
different operating systems, we will focus mainly on Windows.

During the course, we will provide the tools and instructions for
you to build your own lab.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Let’s begin with some important concepts and terms that will help
you understand the attacks and exploits that we will create and
use later.

We will discuss the CPU, instructions, registers, machine code,
assembly language, memory, the stack and much more. If you are
comfortable with these topics, feel free to skip this section.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The Central Process Unit (CPU) is the device in charge of executing
the machine code of a program.

The machine code, or machine language, is the set of instructions
that the CPU processes.

Each instruction is a primitive command that executes a specific
operation such as move data, changes the execution flow of the
program, perform arithmetic or logic operations and others.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

CPU instructions are represented in hexadecimal (HEX)
format. Due to its complexity, it is impossible for humans to
utilize it in its natural format.

Therefore, the same machine code gets translated into
mnemonic code (a more readable language); this is called the
assembly language (ASM). The two most popular are NASM
(Netwide Assembler) and MASM (Microsoft Macro
Assembler). The assembler we are going to use is NASM.

https://www.nasm.us/
https://www.microsoft.com/en-us/download/details.aspx?id=12654

http://www.nasm.us/
https://www.microsoft.com/en-us/download/details.aspx?id=12654

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The example in the next slide is the machine code of a program
called sample1_helloworld.exe.

We explain this later, but for now, it is useful to understand the
differences between the machine language and the assembly
language.

You can download all the samples by opening the Resource tab in
the member's area and downloading the module archive.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

helloworld.exe:

Disassembly of section .text:

00401500 <_main>:

401500: 55 push ebp

401501: 89 e5 mov ebp,esp

401503: 83 e4 f0 and esp,0xfffffff0

401506: 83 ec 10 sub esp,0x10

401509: e8 72 09 00 00 call 401e80 <___main>

40150e: c7 04 24 00 40 40 00 mov DWORD PTR

[esp],0x404000

401515: e8 de 10 00 00 call 4025f8 <_puts>

40151a: b8 00 00 00 00 mov eax,0x0

40151f: c9 leave

401520: c3 ret

Machine language Assembly

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

IMPORTANT

Each CPU has its own instruction set architecture (ISA). The ISA is
the set of instructions that a programmer (or a compiler) must
understand and use to write a program correctly for that specific
CPU and machine.

In other words, ISA is what a programmer can see: memory,
registers, instructions, etc. It provides all the necessary information
for who wants to write a program in that machine language.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

One of the most common ISA is the x86 instruction set (or
architecture) originated from the Intel 8086.

The x86 acronym identifies 32-bit processors, while x64 (aka
x86_64 or AMD64) identifies the 64-bit versions.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The number of bits, 32 or 64, refers to the width of the CPU
registers.

Each CPU has its fixed set of registers that are accessed when
required. You can think of registers as temporary variables used by
the CPU to get and store data.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Registers are a key component of this module. Although almost all
registers are small portions of memory in the CPU and serve to
store data temporarily, it is important to know that some of them
have specific functions, while some others are used for general
data storage.

For the purpose of this course, we will focus on a specific group of
registers: The General Purpose Registers (GPRs).

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The following table summarizes the eight general purpose
registers. Notice that the naming convention refers to the x86
architecture. We will see how the names differ for 64-bit, 32-bit,
16-bit and 8-bit.

X86 Naming

Convention
Name Purpose

EAX Accumulator Used in arithmetic operation
ECX Counter Used in shift/rotate instruction and loops
EDX Data Used in arithmetic operation and I/O
EBX Base Used as a pointer to data
ESP Stack Pointer Pointer to the top of the stack
EBP Base Pointer Pointer to the base of the stack (aka Stack Base Pointer, or Frame pointer)
ESI Source Index Used as a pointer to a source in stream operation
EDI Destination Used as a pointer to a destination in stream operation

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Although this information may seem overwhelming, everything
will be more clear once we will talk about the stack.

The naming convention of the old 8-bit CPU had 16-bit register
divided into two parts:

• A low byte, identified by an L at the end of the name, and

• A high byte, identified by an H at the end of the name.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The 16-bit naming convention combines the L and the H, and
replaces it with an X. While for Stack Pointer, Base Pointer, Source
and Destination registers it simply removes the L.

In the 32-bit representation, the register acronym is prefixed with
an E, meaning extended. Whereas, in the 64-bit representation,
the E is replaced with the R.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The following tables summarize the naming conventions. Although
we will mainly use the 32-bit name convention, it is useful to
understand the 64-bit name convention as well.

Register Accumulator Counter Data Base
64-bit RAX RCX RDX RBX
32-bit EAX ECX EDX EBX
16-bit AX CX DX BX
8-bit AH AL CH CL DH DL BH BL

Register Stack Pointer Base Pointer Source Destination
64-bit RSP RBP RSI RDI
32-bit ESP EBP ESI EDI
16-bit SP BP SI DI
8-bit SPL BPL SIL DIL

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

In addition to the eight general purposes registers, there is also
another register that will be important for our purposes, the EIP
(x86 naming convention). The Instruction Pointer (EIP) controls the
program execution by storing a pointer to the address of the next
instruction (machine code) that will be executed.

It tells the CPU where the next instruction is.

IMPORTANT

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

When a process runs, it
is typically organized in
memory as shown in the
figure on the right.

.text

.data

BSS

Heap

Stack

Instructions

Initialized variable

Uninitialized variable

Lower memory addresses
0

0xFFFFFFFF
Higher memory addresses

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The process is divided into four regions: Text, Data, the Heap, and
the Stack.

The Text region, or instruction segment, is fixed by the program
and contains the program code (instructions). This region is
marked as read-only since the program should not change during
execution.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The Data region is divided into initialized data and uninitialized
data. Initialized data includes items such as static and global
declared variables that are pre-defined and can be modified.

The uninitialized data, named Block Started by Symbol (BSS), also
initializes variables that are initialized to zero or do not have
explicit initialization (ex. static int t).

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Next is the Heap, which starts right after the BSS segment. During
the execution, the program can request more space in memory via
brk and sbrk system calls, used by mlloc, realloc and free. Hence,
the size of the data region can be extended; this is not vital, but if
you are very interested in a more detailed process, these may be
topics to do your own research on.

The last region of the memory is the Stack. For our purposes, this
is the most important structure we will deal with.

http://man7.org/linux/man-pages/man2/brk.2.html
http://man7.org/linux/man-pages/man3/malloc.3.html

http://man7.org/linux/man-pages/man3/realloc.3p.html
http://man7.org/linux/man-pages/man1/free.1.html

http://man7.org/linux/man-pages/man2/brk.2.html
http://man7.org/linux/man-pages/man2/brk.2.html
http://man7.org/linux/man-pages/man3/malloc.3.html
http://man7.org/linux/man-pages/man3/realloc.3p.html
http://man7.org/linux/man-pages/man1/free.1.html

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The Stack is a Last-in-First-out (LIFO) block of memory. It is located
in the higher part of the memory. You can think of the stack as an
array used for saving a function’s return addresses, passing
function arguments, and storing local variables.

The purpose of the ESP register (Stack Pointer) is to identify the
top of the stack, and it is modified each time a value is pushed in
(PUSH) or popped out (POP).

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Before seeing how the stack works and how to operate on it,
it is important to understand how the stack grows.

Common sense would make you think that the stack grows
upwards, towards higher memory addresses, but as you saw
in the previous memory structure diagram, the stack grows
downward, towards the lower memory addresses.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

This is probably due to historical reasons when the memory in old
computers was limited and divided into two parts: Heap and Stack.

Knowing the limits of the memory allowed the programmer to
know how big the heap and/or the stack would be.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

It was decided that the Heap would start from lower addresses
and grow upwards and the Stack would start from the end of the
memory and grow downward.

Heap Stack
0

Lower addresses

0xFFFFFFFF

Higher addresses

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

As previously mentioned, the stack is a LIFO structure, and the
most fundamental operations are the PUSH and POP.

The main pointer for these operations is the ESP, which contains
the memory address for the top of the stack and changes during
each PUSH and POP operation.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

In the majority of these modules, when a new topic is introduced
like the PUSH process, we will provide you with two examples.

The first will be of the concept. It will not be overly specific, but it
will provide you with a good overview. The second example will be
an actual breakdown of the previous example with specific
languages and terms.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

While the first examples are fairly simple, understanding them will
lay a good foundation for the more specific concepts we will
explain later.

We will now give you a visual representation of what we have been
talking about.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The first example of how the stack changes is the execution of the
following instruction: PUSH E.

The second example is the execution of the following instruction:
POP E.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

PUSH Instruction:

• PUSH E

PUSH Process:

• A PUSH is executed, and the ESP register is modified.

Starting value:

• The ESP points to the top of the stack.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Process:

• A PUSH instruction subtracts 4 (in 32-bit) or 8 (in 64-bit) from
the ESP and writes the data to the memory address in the
ESP, and then updates the ESP to the top of the stack.
Remember that the Stack grows backward. Therefore the
PUSH subtracts 4 or 8, in order to point to a lower memory
location on the stack. If we do not subtract it, the PUSH
operation will overwrite the current location pointed by ESP
(the top) and we would lose data.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Ending value:

• The ESP points to the top of the stack -4.

PUSH (E)

ESP

ESP-4

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Now for a more detailed example of the PUSH instruction.

Starting value: (ESP contains the address value)

• ESP points to the following memory address:
0x0028FF80.

Process:

• The program executes the instruction PUSH 1. ESP
decreases by 4, becoming 0x0028FF7C, and the value 1
will be pushed on the stack.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Ending value:

• ESP points to the following memory address:
0x0028FF7C.

ESP = 0x0028FF80

PUSH 1

ESP = 0x0028FF7C

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

POP Process:

• A POP is executed, and the ESP register is modified.

Starting value:

• The ESP points to the top of the stack. (Previous ESP +4)

Process:

• The POP operation is the opposite of PUSH, and it retrieves data from the top of the
Stack. Therefore, the data contained at the address location in ESP (the top of the
stack) is retrieved and stored (usually in another register). After a POP operation,
the ESP value is incremented, in x86 by 4 or in x64 by 8.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Ending value:

• The ESP points to the top of the stack. (Same as the
previous location before the PUSH)

POP (E)

ESP

ESP+4

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Here is a more detailed example of the POP.
Starting value: (ESP contains the address value)

• After the PUSH 1, the ESP points to the following memory
address: 0x0028FF7C.

Process:
• The program executes the inverse instruction, POP EAX. The

value (00000001) contained at the address of the ESP
(0x0028FF7c = the top of the Stack), will be popped out from
the stack and will be copied in the EAX register. Then, ESP is
updated by adding 4 and becoming 0x0028FF80.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Ending value:

• ESP points to the following memory address: 0x0028FF8. It
returns to its original value.

ESP = 0x0028FF80

POP EAX

ESP = 0x0028FF7C

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

It is important to understand that the value popped from the stack
is not deleted (or zeroed). It will stay in the stack until another
instruction overwrites it.

Now that we know more about the Stack, we will investigate how
procedures and functions work. It is important to know that
procedures and functions alter the normal flow of the process.
When a procedure or a function terminates, it returns control to
the statement or instruction that called the function.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Functions contain two important components, the prologue and
the epilogue, which we will discuss later, but here is a very quick
overview. The prologue prepares the stack to be used, similar to
putting a bookmark in a book. When the function has completed,
the epilogue resets the stack to the prologue settings.

The Stack consists of logical stack frames (portions/areas of the
Stack), that are PUSHed when calling a function and POPped when
returning a value.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

When a subroutine, such as a function or procedure, is started, a
stack frame is created and assigned to the current ESP location
(top of the stack); this allows the subroutine to operate
independently in its own location in the stack.

When the subroutine ends, two things happen:

1. The program receives the parameters passed from the
subroutine.

2. The Instruction Pointer (EIP) is reset to the location at the
time of the initial call.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

In other words, the stack frame keeps track of the location where
each subroutine should return the control when it terminates.

We will break down this process in a more specific example for you
to better understand how stack frames work. First, we will explain
the operations, and then we will illustrate how it happens in an
actual program. When this program is run, the following process
occurs.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

This process has three main operations:

1. When a function is called, the arguments [(in brackets)] need
to be evaluated.

2. The control flow jumps to the body of the function, and the
program executes its code.

3. Once the function ends, a return statement is encountered,
the program returns to the function call (the next statement
in the code).

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The following diagram explains how this works in the Stack. This example
is written in C:

int b(){ //function b

return 0;

}

int a(){ // function a

b();

return 0;

}

int main (){//main function

a();

return 0;

}

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The entry point of the program is main().

The first stack frame that needs to be pushed to the Stack is
the main() stack frame. Once initialized, the stack pointer is
set to the top of the stack and a new main() stack frame is
created.

STEP 1

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Our stack will then look like the following:

D
ir
e
c
ti
o
n
 o

f
g
ro

w

Lower memory
address

Higher memory
address

Frame for
main ()

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Once inside main(), the first instruction that executes is a call to
the function named a(). Once again, the stack pointer is set to
the top of the stack of main()
and a new stack frame for a()
is created on the stack.

main() calls a()

Frame for
main ()

Frame for
a()

D
ir
e
c
ti
o
n
 o

f
g
ro

w

Lower memory address

Higher memory address

Frame for
main ()

STEP 2

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Once the function a() starts, the first instruction is a call to the
function named b(). Here again, the stack pointer is set, and a
new stack frame for b()
will be pushed on the
top of the stack.

main() calls a()

Frame for
main ()

Frame for
a()

D
ir
e
c
ti
o
n
 o

f
g
ro

w

Lower memory address

Higher memory address

Frame for
main ()

Frame for
main()

Frame for
a()

Frame for
b()

a() calls b()

STEP 3

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The function b() does nothing and just returns. When the function completes,
the stack pointer is moved to its previous location, and the program returns to
the stack frame of a() and continues with the next instruction.

main() calls a()

Frame for
main ()

Frame for
a()

D
ir
e
c
ti
o
n
 o

f
g
ro

w

Lower memory address

Higher memory address

Frame for
main ()

Frame for
main()

Frame for
a()

Frame for
b()

a() calls b()

Frame for
main ()

Frame for
a ()

return from b()

STEP 4

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The next instruction executed is the return statement contained in a(). The
a() stack frame is popped, the stack pointer is reset, and we will get back in
the main() stack frame.

main() calls a()

Frame for
main ()

Frame for
a()

D
ir
e
c
ti
o
n
 o

f
g
ro

w

Lower memory address

Higher memory address

Frame for
main ()

Frame for
main()

Frame for
a()

Frame for
b()

a() calls b()

Frame for
main ()

Frame for
a ()

return from b()

Frame for
main ()

return from a()

STEP 5

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

This was a quick overview of how stack frames work, but for buffer
overflows, we need to go into more detail as to what information is
stored, where it is stored and how the registers are updated.

This second example is also written in C.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The most important thing to observe is how the stack changes.
Let’s inspect the steps in the next slides.

void functest(int a, int b, int c) {

int test1 = 55;

int test2 = 56;

}

int main(int argc, char *argv[]) {

int x = 11;

int z = 12;

int y = 13;

functest(30,31,32);

return 0;

}

Step 1

Step 2

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

When the program starts, the function main() parameters
(argc, argv) will be pushed on the stack, from right to left. Our
stack will look like this:

Parameters of main()

D
ir

e
c
ti
o
n
 o

f
g
ro

w
Lower memory address

Higher memory address

STEP 1

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

CALL the function main(). Then, the processor PUSHes the
content of the EIP (Instruction Pointer) to the stack and points to
the first byte after the CALL instruction.

This process is important because we need to know the address of
the next instruction in order to proceed when we return from the
function called.

STEP 2

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The caller (the instruction that executes the function calls - the OS
in this case) loses its control, and the callee (the function that is
called - the main function) takes control.

Return address from main()
(the next instruction to execute
once we return from main)

D
ir

e
c
ti
o
n
 o

f
g
ro

w
Lower memory address

Higher memory address

STEP 3

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Now that we are in the main() function, a new stack frame
needs to be created. The stack frame is defined by the EBP (Base
Pointer) and the ESP (Stack pointer). Because we don’t want to
lose the old stack frame information, we have to save the current
EBP on the Stack. If we did not do this, when we returned, we will
not know that this information belonged to the previous stack
frame, the function that called main(). Once its value is stored,
the EBP is updated, and it points to the top of the stack.

STEP 4

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

From this point, the new stack frame starts on the top of the old
one.

D
ir
e
c
ti
o
n
 o

f

g
ro

w
th
Lower memory address

Higher memory address

Contains the base
pointer of the caller

At this time, both EBP and
ESP points at this memory
address

O
ld

 s
ta

c
k

fra
m

e

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The previous step is known as the prologue: it is a sequence of
instructions that take place at the beginning of a function. This will
occur for all functions. Once the callee gets the control, it will
execute the following instructions:

1 push ebp

2 mov ebp, esp

3 sub esp, X // X is a number

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The first instruction (push ebp) saves the old base pointer onto
the stack, so it can be restored later on when the function returns.

EBP is currently pointing to the location of the top of the previous
stack frame.

1 push ebp

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The second instruction (mov ebp, esp), copies the value of the Stack
pointer (ESP - top of the stack) into the base pointer (EBP); this creates a
new stack frame on top of the Stack.

• The base of the new stack frame is on top of the old stack frame

• Important: Notice that in assembly, the second operand of the
instruction (esp in this case) is the source, while the first
operand (ebp in this case) is the destination. Hence, esp is
moved into ebp.

2 mov ebp, esp

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The last instruction (sub esp, X), moves the Stack Pointer (top of the
stack) by decreasing its value; this is necessary to make space for the
local variables.

• Similar to the previous instruction, X is the source and esp is
the destination. Therefore, the instruction subtracts X from esp
(this X is not the int variable X from the program).

3 sub esp, X // X is a number

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Let’s inspect the last instruction in more detail.

The third instruction creates enough space in the stack to copy
local variables. Variables are allocated by decreasing the stack
pointer (top of the stack) by the amount of space required.

Remember that the stack grows backward. Therefore, we have to
decrease its value to expand the stack frame.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The following image represents the Stack once the prologue has
happened:

[ESP-X]

EBP

EBP-4

EBP-8

EBP+4

EBP+8

…

…

EBP+0

D
ir
e
c
ti
o
n
 o

f
g
ro

w

Lower memory address

Higher memory address

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Notice that since the main function contains other variables, and a
function call, the actual stack frame for the main() subroutine is
slightly bigger.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Once the prologue ends, the stack frame for main() is complete,
and the local variables are copied to the stack. Since ESP is not
pointing to the memory address right after EBP, we cannot use the
PUSH operation, since PUSH stores the value on top of the stack
(the address pointed by ESP).

The variable is a hexadecimal value that is an offset from the base
pointer (EBP) or the stack pointer (ESP).

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The instructions after the prologue are like the following:

This instruction means: move the value 0B (hexadecimal of 11 -
the first local variable) into the memory address location pointed
at ESP+Y. Note that Y is a number and ESP+Y points to a
memory address between EBP and ESP.

MOV DWORD PTR SS:[ESP+Y],0B

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

This process will repeat through all the variables, and once the
process completes, the stack will look like the following:

Then the main() continues executing its instructions.

D
ir
e
c
ti
o
n
 o

f
g
ro

w

Lower memory address

Higher memory

address

ESP

EBP

EBP-4

EBP-8

EBP+4

EBP+8
…

…

EBP+0

[ESP+Y]

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Looking back at the source code from the second example, we can
see that the next instruction calls the function functest().

The whole process will be executed again. This time a new stack
frame will be created for the function functest().

STEP 5

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The process looks like the following:

• PUSH the function parameters in the stack.

• Call the function functest().

• Execute the prologue (which will update EBP and ESP to
create the new stack frame).

• Allocate local variables onto the stack.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The following is how the
stack looks like at the end of
the entire process.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

So far we have seen only half of the process: how the stack frames
are created. Now, we have to understand how they are destroyed.

What happens when the code executes a return statement, and
the control goes back to the previous procedure (and stack frame)?

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

When the program enters a function, the prologue is
executed to create the new stack frame.

When the program executes a return statement, the previous
stack frame is restored thanks to the epilogue.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The operations executed by the epilogue are the following:

• Return the control to the caller.

• Replace the stack pointer with the current base pointer. It
restores its value to before the prologue; this is done by
POPping the base pointer from the stack.

• Returns to the caller by POPping the instruction pointer from
the stack (stored in the stack) and then it jumps to it.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The following code represents the epilogue:

The instructions can also be written as follows:

leave

ret

mov esp, ebp

pop ebp

ret

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Here is what happens to the
previous stack when the
function functest() ends.

Notice that even if the code
does not contain a return, when
the program leaves a subroutine
it will still run the epilogue.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The first instruction in the epilogue is mov esp, ebp. After it
gets executed, both ESP and EBP point to the same location.

The next instruction is pop ebp, which simply POPS the value
from the top of the stack into EBP. Since the top of the Stack
points to the memory address location where the old EBP is stored
(the EBP of the caller), the caller stack frame is restored.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

It is important to know that a
POP operation automatically
updates the ESP (same as
the PUSH).

Therefore, ESP now points to
the old EIP previously stored.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The last instruction that the
epilogue will execute is ret.

RET pops the value contained at
the top of the stack to the old
EIP – the next instruction after
the caller, and jumps to that
location. This gives control back
to the caller. RET affects only the
EIP and the ESP registers.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

At this point, everything is restored correctly, and the program can
continue with the next instruction. Although all this information
may seem overwhelming right now, in the following video we will
see the entire process in a debugger.

This will help you to understand how stack and registers work.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

https://members.elearnsecurity.com/course/4000/4400/4402/2/index.html
https://members.elearnsecurity.com/course/resources/name/ptp_v5_section_1_module_1_video_1_stack_frames

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Endianness is the way of representing (storing) values in memory.

Even though there are three types of endianness, we will explain
only two of them, the most important ones: big-endian and little-
endian.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

First, it is important to know these two concepts:

• The most significant bit (MSB) in a binary number is the
largest value, usually the first from the left. So, for example,
considering the binary number 100 the MSB is 1.

• The least significant bit (LSB) in a binary number is the lowest
values, usually the first from the right. So, for example,
considering the binary number 110 the LSB is 0.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

In the big-endian representation, the least significant byte (LSB) is
stored at the highest memory address. While the most significant
byte (MSB) is at the lowest memory address.

Example: the 0x12345678 value is represented as:
Highest memory

Lowest memory

Address in memory Byte value

+0 0x12

+1 0x34

+2 0x56

+3 0x78

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Respectively, in the little-endian representation, the least
significant byte (LSB) is stored at the lower memory address, while
the most significant byte is at the highest memory address.
Example: 0x12345678 is represented in memory as:

Highest memory

Lowest memory

Address in memory Byte value

+0 0x78

+1 0x56

+2 0x34

+3 0x12

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Here’s another example. Let us consider the value 11 (0B in
hexadecimal).

The example system is using little-endian representation;
therefore, the LSB is stored in the lower memory address, or MSB
is stored at the highest memory address.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Using the previous table, we will have the following

Highest memory

Lowest memory

Address in memory Byte value

+0 0x0B

+1 0x00

+2 0x00

+3 0x00

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Accordingly, the value will be represented on the stack like the
following image.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Remember that the most significant byte is stored at the highest
memory address and since the stack grows backward (towards
lower addresses), the most significant byte (0B in this case) will be
stored on the "left" (0028FEBF – the highest memory address).

You will see later on that knowing the difference between little-
endian and big-endian is important to write our payloads correctly
and successfully exploit Buffer Overflows vulnerabilities.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Another important topic is the No Operation instruction (NOP).

NOP is an assembly language instruction that does nothing. When
the program encounters a NOP, it will simply skip to the next
instruction. In Intel x86 CPUs, NOP instructions are represented
with the hexadecimal value 0x90.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

NOP-sled is a technique used during the exploitation process of
Buffer Overflows. Its only purpose is to fill a large (or small) portion
of the stack with NOPs; this will allow us to slide down to the
instruction we want to execute, which is usually put after the NOP-
sled.

The reason is because Buffer Overflows have to match a specific
size and location that the program is expecting.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The following image represents what is
called NOP-sled.

We will cover this in more detail in the
next modules.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Here is an overview of the security implementations that have
been developed during the past several years to prevent, or
impede, the exploitation of vulnerabilities such as Buffer Overflow.

• Address Space Layout Randomization (ASLR)

• Data Execution Prevention (DEP)

• Stack Cookies (Canary)

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The goal of Address Space Layout Randomization (ASLR) is to
introduce randomness for executables, libraries, and stacks in the
memory address space; this makes it more difficult for an attacker
to predict memory addresses and causes exploits to fail and crash
the process.

When ASLR is activated, the OS loads the same executable at
different locations in memory every time.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Here is an example. The application calculator (calc.exe) is
opened in the debugger and has the base address of 00170000.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

After rebooting the machine and reloading calculator (calc.exe)
again, we can see that the base address has changed to:
01040000.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

This happens because of ASLR. Once we dig deeper into Buffer
Overflow vulnerabilities, we will see why ASLR may be a problem
to successful exploitation.

There will be an exhaustive explanation of debugging tools in the
next modules, so don’t worry if you don’t understand these
screenshots.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

It is important to note that ASLR is not enabled for all modules.

This means that, even if a process has ASLR enabled, there could
be a DLL in the address space without this protection which could
make the process vulnerable to the ASLR bypass attack.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Software: To verify the status of ASLR on different programs,
download the Process Explorer from here, and verify yourself. In
our system, we can see that not all the processes use ASLR:

https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer

http://technet.microsoft.com/en-us/sysinternals/bb896653

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Windows provides another tool that helps solve the problem of
exploitation, the Enhanced Mitigation Experience Toolkit (EMET).

It provides users with the ability to deploy security mitigation
technologies to all applications.

https://blogs.technet.microsoft.com/srd/2010/09/02/the-enhanced-mitigation-experience-toolkit-2-0-is-now-available/

http://blogs.technet.com/b/srd/archive/2010/09/02/enhanced-mitigation-experience-toolkit-emet-v2-0-0.aspx

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Data Execution Prevention (DEP) is a defensive hardware and
software measure that prevents the execution of code from pages
in memory that are not explicitly marked as executable. The code
injected into the memory cannot be run from that region; this
makes buffer overflow exploitations even harder.

If you want to read more about DEP, here is a good resource.

https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in

https://support.microsoft.com/en-us/kb/875352

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

The canary, or stack cookie, is a security implementation that
places a value next to the return address on the stack.

The function prologue loads a value into this location, while the
epilogue makes sure that the value is intact. As a result, when the
epilogue runs, it checks that the value is still there and that it is
correct.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

If it is not, a buffer overflow has probably taken place. This is
because a buffer overflow usually overwrites data in the stack.

We will talk again about security implementations once we study
how buffer overflows work.

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

NASM MASM

Brk Malloc

Ralloc
Process Explorer

EMET DEP

https://www.nasm.us/

http://man7.org/linux/man-
pages/man2/brk.2.html

http://man7.org/linux/man-
pages/man3/realloc.3p.html

https://blogs.technet.microsoft.com/srd/201
0/09/02/the-enhanced-mitigation-
experience-toolkit-2-0-is-now-available/

https://www.microsoft.com/en-
us/download/details.aspx?id=12654

http://man7.org/linux/man-
pages/man3/malloc.3.html

https://docs.microsoft.com/en-
us/sysinternals/downloads/process-explorer

https://support.microsoft.com/en-
us/help/875352/a-detailed-description-of-
the-data-execution-prevention-dep-feature-in

http://www.nasm.us/
https://www.microsoft.com/en-us/download/details.aspx?id=12654
http://man7.org/linux/man-pages/man2/brk.2.html
http://man7.org/linux/man-pages/man3/malloc.3.html
http://man7.org/linux/man-pages/man3/realloc.3p.html
http://technet.microsoft.com/en-us/sysinternals/bb896653
http://blogs.technet.com/b/srd/archive/2010/09/02/enhanced-mitigation-experience-toolkit-emet-v2-0-0.aspx
https://support.microsoft.com/en-us/kb/875352
http://www.di-mgt.com.au/rsa_alg.html
http://www.di-mgt.com.au/rsa_alg.html
http://www.di-mgt.com.au/rsa_alg.html
http://www.di-mgt.com.au/rsa_alg.html
http://www.di-mgt.com.au/rsa_alg.html
http://www.di-mgt.com.au/rsa_alg.html
https://www.nasm.us/
http://man7.org/linux/man-pages/man2/brk.2.html
http://man7.org/linux/man-pages/man3/realloc.3p.html
https://blogs.technet.microsoft.com/srd/2010/09/02/the-enhanced-mitigation-experience-toolkit-2-0-is-now-available/
https://www.microsoft.com/en-us/download/details.aspx?id=12654
http://man7.org/linux/man-pages/man3/malloc.3.html
https://docs.microsoft.com/en-us/sysinternals/downloads/process-explorer
https://support.microsoft.com/en-us/help/875352/a-detailed-description-of-the-data-execution-prevention-dep-feature-in

Penetration Testing Professional 5.0 – Caendra Inc. © 2018

Stack Frames

